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A random walk on a two-dimensional lattice with homogeneous rows and  
inhomogeneous columns, which could serve as a model for the study of some 
transport phemonema,  is discussed. Subject to an asymptotic density condition 
on the columns it is shown that the horizontal motion of the walk is asymptoti- 
cally like that of rescaled Brownian motion. Various consequences of this are 
derived including central limit, iterated logarithm, and mean  square displace- 
ment  results for the horizontal component  of the walk. 

KEY WORDS: Random walks; anisotropic lattices; Brownian motion; mar- 
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1. INTRODUCTION 

A number of recent papers, in particular Refs. 1 and 2, have discussed 
random walks on certain anistropic lattices which could serve as a model 
for the study of transport phenomena. These lattices are two dimensional 
with homogeneous rows but inhomogeneous columns. In Ref. 1 the case of 
two types of columns was considered and in Ref. 2 any number of column 
types is allowed but a certain asymptotic density is required to exist 
uniformly over the array of types of columns. The principal object of study 
for such a general array was the mean square displacements of the 
horizontal and vertical components of the walk. 

In this paper we shall adopt a more general approach to the problem 
and will show that the horizontal component of the walk behaves asymptot- 
ically like a rescaled Brownian motion. Detailed limiting behavior can then 
readily be obtained, and in particular the mean square displacement result 
of Westcott (2) but under a somewhat different asymptotic density condition 
for the columns. 
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2. THE MODEL AND THE PRINCIPAL RESULTS 

We shall consider a random walk which, if situated at a site on column 
j ,  moves with probability pj to either horizontal neighbor and with proba- 
bility �89 -p j  to either vertical neighbor at the next step. Thus, at any time 
the transition mechanism depends only on the index of the column which is 
at present occupied. 

Let X n denote the horizontal position of the walk after n steps (X 0 = O) 
so that the transition probabilities are 

e ( X n +  1 = j  +_ l lX . =j)  =pj 

P(X.+~--jlx. =j)= 1-2p+ 
for each j + 2~, the set of integers, and n = O, 1,2 . . . . .  We shall suppose 
that the {p j, j E 7/} satisfy the asymptotic density condition 

k k 

k - '  ~,  p+- '= 2"/+ o(k-"),  k - '  ~ p_j= 2y + o(k -~) (1) 
j ~ l  j = l  

as k ~ m for some constants ,{, �89 < 7 < m and ~ > �89 
Note that the condition of Eq. (1) is satisfied for any strictly periodic 

array of columns, for which there exists a positive integer Q such that 

pj = pj+Q, jET_ 

but neither implies nor is implied by the uniformity condition 

k -lr+k 27 = lim sup ~, pj- 1 _ 0 
k--+oc rE7/ j=r  

of Westcott. (2) 
In the results below we shall use the notation log2n for loglogn, a.s. for 

d 
almost surely (i.e., with probability one), ~ for convergence in distribu- 
tion, and N(0, 1) for the unit normal law. 

We shall establish the following results. 

Theorem 1. The probability space on which (Xn, n >t 0} is defined 
may be expanded so as to carry a standard Brownian motion (W(t),  t ~ 0} 
such that 

"~l/2x n - ~  W(n(1 + En) ) -Jr O(nl/4(logn)l/2(log2n) !/2) a.s. (2) 

as n-+ oe where {%} satisfies lim,_,oo % = 0 a.s. 

Theorem 1 shows that the asymptotic behavior of 71/2X~ is that of 
the randomly rescaled Brownian motion W(n(1 + c,)). The error of the 
approximation should be viewed in the light of the law of the iterat- 
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ed logarithm for Brownian motion which gives limsup,__,~[W(n)[ = 
O((n log2n) 1/2) a.s. 

If strong additional assumptions are made about the column types, for 
example if there is a finite number of different types which occur with fixed 
periodicity, then the random variable e, can safely be removed and rele- 
gated to the error in (2). We shall not pursue this question here because the 
presence of c, does not cause undue complication in the extraction of 
specific results from (2) as evidenced by Corollary 1 below. 

Corol lary  1. 

(i) 

(ii) 

 ,l/2n_l/2X " d -~N(0, 1) 

1 - 1 / 2  
lim (2n 7 -  log2n ) X. 

n ----> ~ 

- 1 / 2  
lim (2n3,- qog2n ) X~ 

n---> o o  

as n o  oo 

-- 1 a.s., 

= - l a.s. 

Corol lary  2. 

-1 .  as 

An anonymous referee of the paper (=) has shown that (i) of Corollary 
1 can be obtained under the weaker condition ~/= 0. 

3 .  P R O O F S  

Let a 0 = 0 < o  l < e = < - - ,  be the successive times at which the 
values of the X i - X i_ i, i = 1,2 . . . .  are nonzero and put S k = Xo. By the 
assumed symmetry, (S~, k/> 0} is a simple random walk. We shall write 
Sk = ~ =  1 Yj, k > 1, the Yj being independent and identically distributed 
with P(Yj = - 1) = P(Yj = I) = �89 

The principal result which we need in order to establish Theorem 1 is 
given in Theorem 2 below. However, as a prelude we require the following 
lemma. 

L e m m a  1. ~ n - 2 ( p s 7 2  ) < OO and hence ~ ?  n - ~ 2  < ~ a.s. 

Proof. From Eq. (1) we find that pj-~= o(]jll-n), �89 < 7 /<1  as 
I J[ --> ~ .  This ensures the existence of C > 0 for which pj-i < CIj[I-~, all 

j ~ 0. Then, 
o o  

Xn-2(P  2)= X n-2(e 2)+ X 2) 
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and 

while 

since 

oo 

E n-2(Ps. 2) < Po2E n-2< m 
(n:Sn=O} 1 

o0 

E n-2(ps,, 2) < CEn-2(ISJ) 2~ r 
{n:Sn=PO } 1 

<Is.l> 2(1-') < ( s Z ) 1 - ' =  n I - "  

using Liapounov's inequality. This, together with an application of the 
Borel-Cantelli lemmas, completes the proof. �9 

Now we are in a position to establish the following result which is of 
independent interest. 

Theorem 2. 

1 a.S. 
n -  on--~ 7 as n-->~.  

Proof. 
o I . . . .  , ok, k > 1, and ~-o for the trivial a-field, we have 

r =  1 , 2 , . . .  

Writing ~ k for the o-field generated by S1,.. . ,  Sk, 

(Oj+l - oil%) = (2p~) -1 (3) 

((oj+ oj)21~) (2psi) -1 - '  1- = (p~ -1)  
2 2 ' - 1  "<<(Ps:) (4) 

Using Eq. (3) we have that (W., ~.,  n > 0) defined by 

wn= [ 5 - ( 5 1 ~ _ 1 ) ] = o ~  5 pg' (s) 
j = l  

is a martingale. Furthermore, using Eqs. (3) and (4), 

1 1 --1 2 0 T  ((o,+,-(o,+ 1~))21~,) = ( ( o . , -  o~-,p| ) t'~,) <�88 

so that 
00 

E J-2((oj - (oil %.-,)) ~) < 
j = l  

P(oj+~- oj+ r 1 ~ ) = ( 1 - 2  e~)"-12 e,~, 

and hence 
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by virtue of Lemma 1. A standard martingale strong law (e.g., Ref. 3, 
Theorem 2.18, p. 35) then gives 

,_1 (oj- 
j = l  

and hence, in the light of Eq. (5), it suffices to show that 

n--1 
n - 1 2  p g  1 a-:-'~'2y (6) 

j=0 

as n ~ oo in order to obtain the result of the theorem. 
Now set N . ( k )  for the number of Sj, 0 < j < n, for which Sj = k, and 

write 
k k 

O/k:  k - I  E pj I I  , ~k:k-]Ep_2 
j = l  j = l  

recalling that a k ~ 2~,, fl~ -~ 2y as k ~ ~ from Eq. (1). 
Then, 

n - t ~ ]  --1 1 ~ Psi = n -  N . (k ) !p[  1 
j= l  k = - n  

k=l  

= n - I  ~ [ N n ( k ) ( k a k - ( k -  1)ak-l)  
k=l  

+ N . ( -  k)(kf lk  - ( k  - 1)fl k_ ,)] + n - 'N . (O)p  o ' 

n-1 
= n -1 ~.  k ( ( N . ( k )  - N . ( k  + 1))a k 

k=l  

+ [ N . ( - k ) -  } 

+ N . ( n ) a .  + N n ( -  n) f t .  + n -  INn(O)pol (7) 

while N,,(n)a~ " O, N,~(-  n)a-:~ " 0 as N o  ~ ,  since 

~,, ( N . ( n ) )  = ( N . ( - n ) )  = 2 - " =  1 (8) 
n=l  n=l n=l  

Furthermore, using I to denote the indicator function we have N.(0) 
. ~ - 1  ( = 0 ) = 0  = ~ k = o l ( S k  = 0) and ~ . = l n  1 S .  = 0) < ~ a.s. since P(S2.+I 
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and 

o0 as n ~  ~ ,  so that ~ = I n - I P ( S ,  = 0)<  m. It then follows from Kronec- 
ker's Lemma (e.g., Ref. 3, p. 31) that 

n-'N.(O) = n - '  ~ I(Sk = 01 ~:~0 (9) 
k = 0  

as / , / - - - )00 .  

N o w ,  

n - I  

n- '  ~., k { [ N ~ ( k ) -  Nn(k + 1)]a k + [ N n ( - k  ) - N , , ( - k -  1)]flk ) 
k = l  

n - I  

= n-l  E k { [ N n ( k ) -  N,,(k + 1)](a k - 2 7 )  
k = l  

+ IN.(-~)-  No(-~- 1)](Bk-2v)} 

+2",/n -1 ~ N . ( k ) - 2 y [ N . ( n ) + N ~ ( - n ) + n - ' N n ( O ) ]  (10) 
k =  - n  

while 

n : :~ N A k ) = :  
k=  - n  

Also, given e > 0, we can choose N = N(e) so large that jnla j - 2~I 
< e , j~ [  Bj - 2"rl < �9 forj /> N. Then, for n > N, 

n -  n - t  
1 2 k { [ N . ( k ) -  Nn(k+ l ) ] (ak--2y)  

k = N  

+ [ N . ( - k ) -  N . ( - k -  1)](fl k -  2y))! 

rt--1 

< en-' 2 kl-'[INn(k) - N.(k + l)[ + INn(-k) - N . ( - k  - 1)t ] 
k = N  

maxj<,,ISj] 
<2�9  N~(k + l)l ~ k l-€ (11) 

k k = l  

since Nn(Ik{) = 0 for k > maxj<nISjl. 
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Next we need an a.s. bound for supklNn(k ) - N , ( k  + l)[. To obtain 
this we first set �9 = min[k : k > 0, Sk = 0] and A = ~ =  l I(Sk = 1), I denot- 
ing the indicator function. Then, P(A = 0 ) =  �89 and for k > 1 the event 
( A = k }  involves $ 1 = 1 ,  k - 1  returns to 1 from the right and then 
S T - & - i  = - 1 ,  so that p ( A =  k ) =  2 -(k+x). It follows that EA = 1 and 
EA z < r Furthermore, for fixed k we have 

A (k) < Un(k + 1) ~< A~ k) + A(2k) + " ' "  + A(~k) ~ k )  + ~(~)  + . . .  + u . ( k ) - I  

where the A~ k) are independent and identicaliy distributed, for fixed k and i 
running from 1 to ~ ,  with the distribution of A and are independent of 
N,(k), and hence 

N,,(k)- 1 N,,(k) 
l+ E (l-A} k)) > N,(k)-N,(k+ 1)> Z (l-A} k)) 

i = 1  i = 1  

Then, to show that 

suplN,(k ) - N,(k + 1)[ = o(n '/4+~) a.s. (12) 
k 

for any 6 > 0 it suffices to establish that 

m a x  N,~(k) A~ k) ) (1 - = o(n l/a+e) a.s. (13) 
ik] <~ (3n log2n ) /2 i = l  

since 

li--~ (2n log2n ) -  1/2 sup [Sjl = 1 a.s. 
j<~n 

by the classical law of the iterated logarithm. But, for any ( > 0 we have 

~ P (  max N,(k) 
\ Ikl ~< (3n log2n) j/2 

-< E E e ,_s (1 - > 
n [k] ~<(3n log2n) I/2 

= ~ ~] E P (1 - A! k)) > cn '/4+~ P(N~(k)=j) 
Ikl ~< (3n log:n) 1/2 i 

since N,(k) is independent of the A} ~). Furthermore, choosing an integer 
r > 3 /46  we have from Markov's inequality and the theorem of Ref. 4 that 

P(i~=l(1--A}k))  > 0"tl/4+~) <'-- Cr,-2rn-2r(l/4+6)J'r 
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where C r depends only on r, and hence 

A <. C~c-2r E E n-2r(I/4+8) k Jrp(Nn(k)=J) 
n [k I < (3n logan) I/2 j =  1 

= Cr'-2~En-2~(' /4+a) 2 , /2( [N.(k) ]~> ' 
n Ikl < ( 3 n  logan ) 

But, for k-T = O, <[Nn(k)]r> < <[Nn(O)]r> (since first passage to k must pre- 
cede successive returns to k which in turn has the distribution of successive 
returns to the origin) so that 

A < 2Cr,-2rEn-ar(l/4+8)(3nlogarl)l/2<[ N,(O)i t> 
n 

Also, 

([U,,(O)]"}-- F ( r / 2  + 1) as n--> 

using Eq. (10.29), p. 230 of Ref. 5 and this leads to A < ~ (since r > 3 /4 8 )  
from which Eq. (12) follows. 

Finally, returning to Eq. (11) and using Eq. (12) we have 

/'/ n - 1  

--I E k{  [Nn(k ) - N . (k  + l ) ] ( a  k - 2y )  
k = l  

+ [ N , ( -  k) - N n ( - k  - 1)](f l  k - 2"y)} 

= o [ n - 3 / 4 + 8 ( m a x I S l r  = 0 ( 1 )  a . s .  
\ ~,j<n "J ] 

since maxy<,lSjl = O(nlogan)  1/2 a.s. by the classical law of the iterated 
logarithm, while ~7 > 1/2 and we can choose 0 < 8 <�89 - !)2 . This com- 
pletes the proof of Theorem 2 in view of Eqs. (7)-(10). [] 

Proo f  o f  T h e o r e m  1. For fixed n let Ok(n) be defined by 

ok(,) = m a x [ j :  j < n, Xj =/= Xj_,]  

so that X n = Xo~<.> = Sk(,) ,  {Sy, j > 0} being a simple random walk. Fur- 
thermore, using Theorem 2, n - lk(n)  ~ "l - 1 a.s. as n ~ m. 

Now, using a result of Strassen (Ref. 6, Theorem 1.5, p. 320), and 
redefining the probability space as necessary, there is a standard Brownian 
motion { W(t) ,  t > 0} such that 

Sy = W ( j )  + O ( j ' / 4 ( l o g j l o g a j )  '/2) a.s. 

as j---> m. Then, writing k ( n ) =  ny- l (1  + en), we have ~n->0 a.s. as n ~ o o  
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and 

X. = Xak(. ' = Sk(.) = W( k(n))  + 0 ( [  k(n) ]'/4[logk(n)tog2k(n) ],/2) 

= W ( n ) , - ' ( l  + c.)) + O(n'/4(lognlog2.) '/2) a.s. 

which completes the proof since (7W2W(tT-1), t >i 0} is also s tandard 
Brownian motion. �9 

Proof of  Corollary 1. Again write k(n) = n 7-1(1 + c.). From Theo- 
rem 1 we have 

7'/2n - ' /2X. = y'/2n - ' / 2W(k(n ) )  + O(n - ' /4( log.  log2n) '/2) a.s. 

d 
and, using = to denote equality in distribution, 

n_, /2W(k(n) )  =4 W ( n - ' k ( n ) )  --~ W(y -1) =d y_ , /2N(0  ' 1) 

since n - lk(n) --> 7 - 1 a.s. n --) co. The result (i) then follows immediately. 
To establish (ii) we first note that, again using Theorem l, 

lira "{ ' /2Xn - l i m  W(k(n) )  [ Tk(n)log2k(n) ] '/2 
. ~  (2nlog2n)l/2 . - ~  [2k(n)logzk(n) ]l/2 [ J n l ~  

and 

W(k(.)) 
lira ~ 1 a.s. 

. ' ~  [2k(n)log2k(n)] '/2 

from the law of the iterated logarithm for Brownian motion, while 

7k(n)log2k(n) 
lira = 1 a . s .  

n-,~ n log2n 

since n - lk(n) --> 7-1 a.s. as n --~ ~ .  Consequently, 

y1/2X n 
lim ~< 1 (14) 

. .~o  (2n log2n) V2 

On the other hand,  recalling that (Xo, = S k, k/> 1 } is simple random walk, 
we have 

"yl/2x% Sk (7klog2k) 1/2 
lira = lira = 1 a.s. (15) 

k-~oo (2aklOg2ok)l/2 k .~  (2klog2k)l/2 OklOg2ak 

since 

li--m (2klog2k)-l/Zsk = 1 a.s. 
k---~ r 
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by the ordinary law of the iterated logarithm, while k-~o k ~ y by Theorem 
2. It follows from Eqs. (14) and (15) that 

lim 71/2X" - 1 a.s. 
n-.oo (2n log2n) 1/2 

and similar considerations apply to the corresponding lim. 

Proof of Corollary 2. It suffices to show that {n-IX~, n/> 1 ) is 
uniformly integrable for then the result follows immediately from part (i) of 
Corollary 1 using, e.g., Ref. 7, Theorem 5.4, p. 32. However, we note that 
{ X n, n >/ 1 } is a martingale and hence, using the theorem of Ref. 4, 

( x a ) < c n  2 

for some finite constant C. The uniform integrability of (n-]X,2, n >/ 1 } 
then follows since (using I for the indicator function) 

n-l(X2I([Xn[>Xnl/2)> < n-2X-2(X4 > < CX -2 

and this completes the proof. 
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